TEORIAS E FILOSOFIAS DE GRACELI 387

 


terça-feira, 16 de julho de 2019






Em física, a série de Lyman é o conjunto de raios que resultam da emissão do átomo do hidrogênio quando um elétron transita de n ≥ 2 a n = 1 (onde n representa o número quântico principal referente ao nível de energia do elétron). As transições são denominadas sequencialmente por letras gregas: desde n = 2 a n = 1 é chamada Lyman-alfa, 3 a 1 é Lyman-beta, 4 a 1 é Lyman-gama, etc.
A primeira linha no espectro ultravioleta da série de Lyman foi descoberta em 1906 pelo físico da Universidade de Harvard Theodore Lyman, que estudava o espectro ultravioleta do hidrogênio gasoso eletricamente excitado. O resto das linhas do espectro foram descobertas por Lyman entre 1906 e 1914. O espectro da radiação emitido pelo hidrogênio não é contínuo. A seguinte ilustração apresenta a primeira série da linha de emissão do hidrogênio:
Série de Lyman
Historicamente, explicar a natureza do espectro do hidrogênio era um problema considerável para a física. Nada pode predizer as longitudes de onda das linhas de hidrogênio até 1885, quando o desenvolvimento da fórmula de Balmer ofereceu uma possibilidade empírica para visibilizar o espetro de hidrogênio. Cinco anos depois Johannes Rydbergapareceu com outra fórmula empírica para resolver o problema, a qual foi apresentada pela primeira vez em 1888 e cuja forma final apareceu em 1890. Rydberg queria encontrar uma fórmula para ligar as já conhecidas linhas de emisão da série de Balmer, e para predizer aquelas ainda não descobertas. Diferentes versões da fórmula de Rydberg com diferentes números simples foram criadas para gerar diferentes séries de linhas.

    Obtenção da série de Lyman[editar | editar código-fonte]

    A versão da fórmula de Rydberg que gerou a série de Lyman era:
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde n é um número natural maior ou igual a 2 (quer dizer n = 2,3,4,...).
    Além disso, as linhas vistas na imagem são os comprimentos de onda correspondentes a n=2 na esquerda, a n= na direita (pois existem infinitas linhas espectrais, mas estas juntam-se a medida que se aproxima a n=, pelo que só algumas das primeiras linhas e a última aparecem efetivamente)
    Os comprimentos de onda (nm) na série de Lyman são todos ultravioletas:
    n234567891011
    Comprimento de onda (nm)121.6102.597.294.993.793.092.692.392.191.991.15
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Explicação e derivação[editar | editar código-fonte]

    Em 1913, quando Niels Bohr produziu sua teoria do modelo atômico, a razão pela qual as linhas espetrais de hidrogênio se ajustam à fórmula de Rydberg podo ser explicada. Bohr viu que o salto do elétron ao átomo do hidrogênio devia ter níveis de energia quantizada descritos na seguinte fórmula:
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Segundo a terceira suposição de Bohr, onde seja que caia um elétron desde um nível inicial de energia () a um nível final de energia (), o átomo deveria emitir radiação com um comprimento de onda de:
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Há ademais uma notação mais cômoda quando se trata de energia em unidades de elétron-volts e comprimentos de onda expressas em ångströms:
    Substituindo a energia na fórmula acima com a expressão para a energia no átomo de hidrogênio onde a energia inicial corresponde ao nível de energia n e a energia final corresponde ao nível de energia m:
    onde R é a mesma constante de Rydberg da fórmula de Rydberg.
    Para conetar a Bohr, Rydberg, e Lyman, se deve substituir m por 1 para obter:
    a qual é a fórmula de Rydberg para a série de Lyman. Além disso, cada comprimento de onda das linhas de emissão correspondem a um elétron caindo de um certo nível de energia (maior que 1) ao primeiro nível de energia.
















    RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.



    TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.

    COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.

    OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DULA ONDAS-PARTÍCILAS.


    RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.

    /

    GENERALIDADES ESPECÍFICAS / PARTÍCULAS..









    ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.






    OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.



    PRINCÍPIO GRACELI  DA INTERPOSIÇÃO
    quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta  relação].

    MAS, O QUE CAUSA ESTA RELAÇÃO?

    É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.

    SENDO QUE NO VERÃO E NA FASE DE AFÉLIO  [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA  SE TORNA  MAIOR.


    O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.

    OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.

    COMO FENÔMENSO DE:

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



    E
    COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.

    COMO SE ENCONTRA ABAIXO.:














    PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES


    QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.


    OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.

    OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].

    OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE,  E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.

    COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.

    VEJAMOS ABAIXO.



     um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.

    pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.


    ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.

    LOGO, SE TEM UMA TRANSCENDENTALIDADE  INDETERMINADA .


    COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.


    OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.


    COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI. 


    E COM VARIÁVEIS CONFORME O SDCTI-GRACELI - 








    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
    POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.

    COMO TAMBÉM TRANSIÇÕES DE :

    E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



    OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.



    TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].

    CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.

    OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.




    SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =


    X SDCTI - GRACELI







    CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.


    OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.

    E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:

    X

    X SDCTI - GRACELI 





    SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E  INDETERMINISTA GRACELI.

    O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.

    FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].

    É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.





    PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.



    DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.

    OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.


    ESTADO QUÂNTICO EXCITADO E [OU] NORMAL


    =


    X SDCTI - GRACELI 



    SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.




    TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



    TRANSFORMAÇÕES ⇔ INTERAÇÕES =  Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,   Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.
    • X

    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D





    conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.



    RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.

    A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.


    RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.

    A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI




    A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .


    RELATIVIDADE GRACELI DE ALTAS ENERGIAS.

    NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.





    OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



    EM = ENERGIA E MASSA.

    SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

    EM X SDC G.=

    EM =
    X


    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D








     VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




    RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

    [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
    V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =

    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


    um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

    o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

    O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


    Com isto pode-se dividir a física em quatro grandes fases:

    a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões


    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico,  estados de fenômenos, estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado,  vejamos alguns:

    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    sexta-feira, 12 de julho de 2019





    Um gás de férmionsgás de Fermi ou gás de elétrons livres é um conjunto de férmions não interativos. É a versão na Mecânica Quântica de um gás ideal, para o caso de partículas fermiônicas. Elétrons em metais e semicondutores e nêutrons em estrelas de nêutrons podem aproximadamente ser considerados gases de Fermi.
    A distribuição de energia dos férmions em um gás de Fermi em equilíbrio térmico é determinada por sua densidade, pela temperaturae pelos estados de energia disponíveis, via a estatística de Fermi-Dirac. Pelo princípio de exclusão de Pauli, nenhum estado quânticopode ser ocupado por mais que um férmion, então a energia total do gás de Fermi à temperatura do zero absoluto é tão grande quanto o produto do número de partículas pelo estado de energia de cada partícula. Por esta razão, a pressão de um gás Fermi é diferente de zero na temperatura de zero absoluto, em contraste com um gás ideal clássico. Esta então chamada pressão de degenerescência estabiliza uma estrela de nêutrons (um gás de Fermi de nêutrons) ou uma estrela anã branca (um gás de Fermi de elétrons) contra a tração interna da gravidade.
    É possível definir uma temperatura de Fermi abaixo do qual o gás pode ser considerado degenerado. Esta temperatura depende da massa dos férmions e da energia da densidade dos estados. Para metais, a temperatura do gás de elétrons de Fermi é geralmente de muitos milhares de kelvins, quando então eles podem ser considerados degenerados. A máxima energia dos férmions a temperatura do zero absoluto é chamada energia de Fermi. A superfície da energia de Fermi no momento espacial é chamada superfície de Fermi.
    Desde que as interações são negligenciadas por definição, o problema de tratar propriedades do equilíbrio e o comportamento dinâmico de um gás de Fermi se reduz ao estudo do comportamento de partículas independentes e isoladas. Como está, é ainda relativamente tratável e dá forma ao ponto de servir de base para teorias mais avançadas (tais como a teoria do líquido de Fermi ou a teoria perturbacional) as quais levam em conta as interações com algum grau de exatidão.

      Descrição matemática[editar | editar código-fonte]

      Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação  dos estados  com a energia  da estatística de Fermi-Dirac:
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Onde  é o potencial químico a temperatura e  a constante de Boltzmann.
      Estes férmions, que estão sujeitos ao princípio de exclusão de Pauli, podem estar na condição de máxima ocupação, ou seja . Esta condição é que a estatística de Fermi-Dirac tratará para qualquer valor de preenchimento pleno , porque o potencial químico de um gás ideal de Fermi não é sujeito a quaisquer restrições.

      Gás de Fermi como modelo para os núcleos dos átomos[editar | editar código-fonte]

      O primeiro pesquisador a apontar uma explicação simples para o movimento independente de núcleons através do núcleo atômico em seus estado fundamental foi Weisskopf.[1] Tal explicação usa como base o modelo de gás de Fermi. O modelo utilizado é essencialmente o mesmo utilizado para tratar de elétrons livres em um metal condutor. É suposto que cada núcleon do núcleo atômico mova-se num potencial efetivo atrativo que representa um efeito médio de suas interações com os outros núcleons naquele núcleo. Há um valor constante dentro do núcleo para este potencial e externamente ao núcleo ele decresce até zero a uma distância igual ao alcance das forças nucleares e é aproximadamente igual a um poço quadrado infinito e tridimensional, de raio ligeiramente superior ao raio do núcleo.[2] O núcleo atômico contém dois tipos de partículas, os prótons e os neutrons e ambos têm um momento angularintrínseco, ambos são classificados como férmions de spin 1/2, mas sendo duas partículas distinguíveis o princípio de exclusão de Pauli age independentemente sobre cada um deles. Assim podemos considerar que o núcleo é constituído por dois gases de Fermi, o dos prótons e o dos nêutrons e que corresponderão a dois estado energéticos diferentes e cada estado só pode ser ocupado por apenas dois prótons ou dois nêutrons, com spins de sinais opostos.[3][4][5]


















      ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.






      OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.



      PRINCÍPIO GRACELI  DA INTERPOSIÇÃO
      quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta  relação].

      MAS, O QUE CAUSA ESTA RELAÇÃO?

      É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.

      SENDO QUE NO VERÃO E NA FASE DE AFÉLIO  [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA  SE TORNA  MAIOR.


      O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.

      OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.

      COMO FENÔMENSO DE:

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



      E
      COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.

      COMO SE ENCONTRA ABAIXO.:














      PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES


      QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.


      OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.

      OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].

      OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE,  E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.

      COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.

      VEJAMOS ABAIXO.



       um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.

      pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.


      ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.

      LOGO, SE TEM UMA TRANSCENDENTALIDADE  INDETERMINADA .


      COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.


      OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.


      COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI. 


      E COM VARIÁVEIS CONFORME O SDCTI-GRACELI - 








      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

      CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
      POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.

      COMO TAMBÉM TRANSIÇÕES DE :

      E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



      OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.



      TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].

      CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.

      OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.




      SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =


      X SDCTI - GRACELI







      CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.


      OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.

      E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:

      X

      X SDCTI - GRACELI 





      SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E  INDETERMINISTA GRACELI.

      O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.

      FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].

      É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.





      PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.



      DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.

      OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.


      ESTADO QUÂNTICO EXCITADO E [OU] NORMAL


      =


      X SDCTI - GRACELI 



      SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.




      TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



      TRANSFORMAÇÕES ⇔ INTERAÇÕES =  Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,   Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.
      • X

      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D





      conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.



      RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.

      A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.


      RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.

      A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI




      A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .


      RELATIVIDADE GRACELI DE ALTAS ENERGIAS.

      NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.





      OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



      EM = ENERGIA E MASSA.

      SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

      EM X SDC G.=

      EM =
      X


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D








       VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




      RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

      [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




      mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


      um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

      o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

      O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


      Com isto pode-se dividir a física em quatro grandes fases:

      a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




      teoria da relatividade categorial Graceli

      ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões


      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico,  estados de fenômenos, estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado,  vejamos alguns:

      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      quarta-feira, 17 de julho de 2019









      Em física, a lei de Rayleigh-Jeans, primeiramente proposta no início do século XX, com o objetivo de descrever a radiação espectral da radiação eletromagnética de todos os comprimentos de onda desde um corpo negro a uma temperatura dada. Expressa a densidade de energia de um radiação de corpo negro de comprimento de onda λ como[1]
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      também sendo escrita na forma
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      onde λ está em metrosc é a velocidade da luzT é a temperatura em Kelvins, e k é a constante de Boltzmann.
      A lei é derivada de argumentos da física clássicaLord Rayleigh obteve pela primeira vez o quarto grau da dependência do comprimento de onda em 1900; uma derivação mais completa, a qual incluia uma constante de proporcionalidade, foi apresentada por Rayleigh e Sir James Jeans em 1905. Esta agregava umas medidas experimentais para comprimentos de onda. Entretanto, esta predizia uma produção de energia que tendia ao infinito já que o comprimento de onda se fazia cada vez menor. Esta idéia não se sustentava pelos experimentos e a falta se conheceu como a "catástrofe ultravioleta"; entretanto, não foi, como as vezes se afirma nos livros-texto de física, uma motivação para a teoria quântica.
      A lei concorda com medições experimentais para grandes comprimentos de onda mas discorda para comprimentos de onda pequenos.
      Em 1900 Max Planck revisou a lei, obtendo uma lei um tanto diferente, a qual estabeleceu:
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      que pode ser escrita também na forma
      x

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      onde h é a constante de Planck e c é a velocidade da luz. Esta é a Lei de Planck expressa em termos de comprimento de onda λ = /ν. A lei de Planck não sofre de uma "catástrofe ultravioleta", e assim de acordo com os dados experimentais, mas seu pleno significado só se apreciaria vários anos mais tarde. No limite de temperaturas muito altas ou grandes comprimentos de onda, no termo exponencial se converte no pequeno, pelo que o denominador se converte em aproximadamente hc / kT λ série de potências de expansão. Isto lhe dá o nome de Lei de Rayleigh-Jeans.














      RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.



      TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.

      COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.

      OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DULA ONDAS-PARTÍCILAS.


      RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.

      /

      GENERALIDADES ESPECÍFICAS / PARTÍCULAS..









      ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.






      OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.



      PRINCÍPIO GRACELI  DA INTERPOSIÇÃO
      quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta  relação].

      MAS, O QUE CAUSA ESTA RELAÇÃO?

      É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.

      SENDO QUE NO VERÃO E NA FASE DE AFÉLIO  [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA  SE TORNA  MAIOR.


      O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.

      OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.

      COMO FENÔMENSO DE:

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



      E
      COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.

      COMO SE ENCONTRA ABAIXO.:














      PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES


      QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.


      OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.

      OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].

      OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE,  E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.

      COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.

      VEJAMOS ABAIXO.



       um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.

      pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.


      ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.

      LOGO, SE TEM UMA TRANSCENDENTALIDADE  INDETERMINADA .


      COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.


      OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.


      COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI. 


      E COM VARIÁVEIS CONFORME O SDCTI-GRACELI - 








      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

      CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
      POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.

      COMO TAMBÉM TRANSIÇÕES DE :

      E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



      OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.



      TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].

      CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.

      OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.




      SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =


      X SDCTI - GRACELI







      CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.


      OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.

      E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:

      X

      X SDCTI - GRACELI 





      SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E  INDETERMINISTA GRACELI.

      O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.

      FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].

      É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.





      PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.



      DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.

      OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.


      ESTADO QUÂNTICO EXCITADO E [OU] NORMAL


      =


      X SDCTI - GRACELI 



      SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.




      TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



      TRANSFORMAÇÕES ⇔ INTERAÇÕES =  Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,   Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.
      • X

      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D





      conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.



      RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.

      A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.


      RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.

      A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI




      A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .


      RELATIVIDADE GRACELI DE ALTAS ENERGIAS.

      NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.





      OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



      EM = ENERGIA E MASSA.

      SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

      EM X SDC G.=

      EM =
      X


      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D








       VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




      RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

      [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
      V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =

      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




      mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


      um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

      o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

      O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


      Com isto pode-se dividir a física em quatro grandes fases:

      a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




      teoria da relatividade categorial Graceli

      ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

      NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões


      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico,  estados de fenômenos, estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado,  vejamos alguns:

      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      domingo, 14 de julho de 2019


      Uma reação química é uma transformação da matéria na qual ocorrem mudanças qualitativas na composição química de uma ou mais substâncias reagentes, resultando em um ou mais produtos.[1][2][3] Envolve mudanças relacionadas à mudança nas conectividades entre os átomos ou íons, na geometria das moléculas das espécies reagentes ou ainda na interconversão entre dois tipos de isômeros. Para iniciar a reação, geralmente é necessário energia na forma de calor.
      Resumidamente pode-se afirmar que uma reação química é uma transformação da matéria em que pelo menos uma ligação química é criada ou desfeita.

        Características[editar | editar código-fonte]

        Um aspecto importante sobre uma reação química é a conservação da massa e o número de espécies químicas microscópicas(átomos e íons) presentes antes e depois da ocorrência da reação. Essas leis de conservação se manifestam microscopicamente sob a forma das leis de Lavoisier, do mestre Proust e de Dalton. De fato, essas leis, no modelo atômico de Dalton, se justificariam pelas leis de conservação acima explicitadas e pelo fato de os átomos apresentarem valências bem definidas. Ao conjunto das características e relações quantitativas dos números de espécies químicas presentes numa reação dá-se o nome de estequiometria.
        Deve-se salientar que uma ligação química ocorre devido a interações entre as nuvens eletrônicas dos átomos, e que então a reação química apenas envolve mudanças nas eletrosferas. No caso de ocorrer mudanças nos núcleos atômicos teremos uma reação nuclear. Ao passo que nas reações químicas a quantidade e os tipos de átomos sejam os mesmos nos reagentes e produtos, na reação nuclear, as partículas subatômicas são liberadas, o que causa redução de sua massa, sendo este um fato relacionado à existência de elementos isóbarosisótonos e isótopos entre si.
        Um exemplo de uma reação química é (ambos os regentes em solução aquosa)
        NaCl + AgNO3  NaNO3 + AgCl
        x


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        Nesta reação química, ao passo que o NaNO3 permanece em solução, formou-se uma ligação entre a prata (Ag) e o cloro (Cl) o que resultou em um produto sólido de cloreto de prata (AgCl), pode-se então dizer que houve uma reação química.
        Balanceamento de equações químicas
        Em uma reação química os elementos e o número de átomos de cada elemento têm de ser os mesmos antes e depois da reação (equação balanceada). Durante a reação química não ocorre destruição ou criação de novos átomos, o que muda é a forma com que os átomos estão organizados, podendo haver transferência de elétrons de um átomo para outro. Por esse motivo sempre é preciso verificar se as equações químicas estão balanceadas.
        Para realizar o balanceamento de uma equação é necessário adicionar coeficientes (números inteiros que colocados antes de cada substância, tornam o número de átomos iguais em cada membro da equação). Os coeficientes indicam apenas a proporção entre os átomos, não alterando os índices (números menores que aparecem depois do elemento) das formulas, pois isso alteraria a natureza química da substância.
                                     H2(g) + O2(g)  → H2O(l) (equação não balanceada)
        O primeiro membro da equação apresenta dois átomos de hidrogênio e dois de oxigênio. No segundo membro o hidrogênio também apresenta dois átomos, porém o oxigênio apresenta apenas um, ou seja, a equação está desbalanceada.
        2H2(g) + O2(g)  → 2H2O(l) (equação balanceada)
        x


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
                    Após o balanceamento, são observados quatro átomos de hidrogênio no primeiro e no segundo membros da equação. E em relação ao oxigênio, são observados dois átomos no primeiro e no segundo membros.
        As letras entre parênteses presentes nas equações representam o estado físico de cada elemento. Sendo assim, (l) liquido; (s) sólido; (g) gás; (aq) substância em solução aquosa; (v) vapor.
        Em equações mais complicadas, devemos começar o balanceamento sempre pelo elemento que aparece apenas uma vez em cada membro da equação, por exemplo:
        CH4 + O2 → CO2 + H2(equação desbalanceada)
        x


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        Neste caso tanto o carbono quanto o hidrogênio aparecem apenas uma vez em cada membro da equação, portanto o balanceamento começa por eles. Depois que esses forem balanceados, deve-se conferir se o número dos outros átomos está correto.
        CH4(g) + 2O2(g) → CO2(g)+ 2H2O(v) (equação balanceada)
        No caso de todos os elementos aparecerem apenas uma vez em cada membro da equação, deve-se começar o balanceamento pelo elemento com maior índice. Por exemplo:
        Fe + O2 → Fe2O3 (equação desbalanceada)
        Neste exemplo o balanceamento se inicia pelo oxigênio, pois ele apresenta o maior índice (3). Depois deve-se conferir se o número de átomos de ferro está correto.
        4Fe(s) + 3O2(g) → 2Fe2O3(s) (equação balanceada)

        Causas das reações químicas[editar | editar código-fonte]

        O acontecimento de reações deve-se a fatores termodinâmicos e cinéticos.

        Termodinâmico[editar | editar código-fonte]

        Quanto à termodinâmica, o acontecimento de uma reação é favorecido com o aumento da entropia e a diminuição da energia. Essas duas grandezas se cooperam nesse caso de acordo com a seguinte equação:
        ΔG = ΔH — T · ΔS (para sistemas a pressão constante)
        x


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

        ΔA = ΔU — T · ΔS (para sistemas a volume constante)
        x


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        Onde T é a temperatura em kelvin, ΔH é a variação da entalpia (que é igual a energia absorvida ou liberada em pressão constante) entre os reagentes e os produtos, ΔU é variação da energia interna (que é igual a energia absorvida ou liberada a volume constante) entre eles, ΔS é a variação da entropia entre os mesmos, ΔG é uma grandeza chamada de energia livre de Gibbs e ΔA é uma grandeza chamada de energia de Helmholtz.
        Se ΔA e ΔG forem maiores que zero em dadas condições, a reação é dita como não espontânea nessas condições, e ela ocorre ou não ocorre em escala apreciável. Na situação de ΔA e ΔG iguais a zero teremos um equilíbrio químico.
        Caso ΔA e ΔG sejam menores que zero em dadas condições, dizemos que a reação é termodinamicamente favorável nestas condições, ou seja, ela é espontânea. Contudo é importante notar que uma reação ser espontânea não necessariamente significa que ela ocorra rapidamente.

        Cinética[editar | editar código-fonte]

        Nesse ponto, entram os fatores cinéticos. Para que uma reação ocorra é necessário que antes, os reagentes superem uma certa barreira de energia, e quanto maior for essa barreira mais difícil será a reação ocorrer e mais lenta ela será. Dessa forma, uma reação termodinamicamente favorável pode ocorrer de forma extremamente lenta ou acabar nem sendo observada em um intervalo de tempo consideravelmente grande; então se diz que a reação é cineticamente desfavorável. Um bom exemplo disso é o carvão e o diamante, que são duas formas diferentes de carbono (alótropos); em condições normais a transformação de diamante a carvão é termodinamicamente favorável porém cineticamente desfavorável, o que faz com que fossem necessários centenas ou milhares de anos para se observar alguma mudança em um diamante. É preciso entender que uma reação para ser cineticamente viável, necessita primeiramente ser termodinamicamente possível.

        Tipos de reações químicas[editar | editar código-fonte]

        Tradicionalmente, as reações químicas podem ser classificadas de acordo com o número de reagentes e produtos em cada membro da equação química que representa a reação:

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        Outra classificação categoriza as reações em dois tipos:
        Algumas reações de síntese, algumas de análise, todas de simples troca e nenhuma de dupla troca são reações de oxirredução
        Classes de reações por molécula:
        1. Reações unimoleculares, em que um reagente sofre ruptura e/ou formação de ligação para produzir diferentes produtos;
        2. Reações bimoleculares, em que dois reagentes colidem e depois sofrem ruptura e/ou formação para produzir diferentes produtos;
        3. Reações de associação termolecular, em que dois reagentes colidem para formar um complexo molecular com uma nova ligação química entre os dois reagentes e uma terceira molécula, remove uma parte da energia cinética interna dessa molécula para estabilizá-la.
        4. Reação quimicamente termolecular, uma reação mediada por um complexo de colisão efêmera (HO2) formado a partir da colisão de duas moléculas (HO2) que então reage após colidir com uma terceira molécula (H)[4].
        Um tipo de reação que não encontra paralelo nas classificações acima é a chamada reação de isomerização.
        Ainda existem uma série de reações que são estudadas em Química Orgânica, ou seja, sub-classes de reações, tais como : Reações de Halogenação, Reações de Hidrogenação, Reações de Substituição Nucleofílica etc.













        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

        sexta-feira, 12 de julho de 2019









        As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica, (antes do início de 1900) pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa dentro matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis ​​físicos, tais como energia e momento já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente: como valores espectrais de operadores lineares no espaço de Hilbert.[1]
        Estas formulações da mecânica quântica, continuem a ser utilizados hoje. No coração da descrição são as idéias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados ​​em anos anteriores modelos da realidade física. Enquanto a matemática permite o cálculo das quantidades de muitos que podem ser medidos experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, E é representado matematicamente no formalismo de novo pelo comutatividade não dos observáveis quânticos.
        Antes do surgimento da mecânica quântica como unidade teoria, a matemática utilizada na física consistiu principalmente em geometria diferencial e equações diferenciais parciais; teoria das probabilidades foi utilizado em mecânica estatística. intuição geométrica claramente desempenhou um papel importante nos dois primeiros e, consequentemente, teorias da relatividade foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuam a pensar da teoria quântica dentro dos limites do que é agora chamado física clássicaE, em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado deste é o quantização de Sommerfeld-Wilson-Ishiwara regra, que foi formulada inteiramente no espaço de fase clássico.

        Postulados da mecânica quântica[editar | editar código-fonte]

        Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
        • O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as  coordenadas generalizadas  e seus momentos conjugados 
        • O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em 
        • A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais
        A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica[2].
        • Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
        • Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade  de encontrar o autovalor  é dada por
        ,
        X


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        onde  é o grau de degenerescência de  e  correspondem aos autovetores de A com autovalor .
        • Se em uma medida de uma grandeza física  no estado  encontramos um autovalor  de , imediatamente após a medida o estado do sistema será a projeção normalizada de  no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
        • A evolução no tempo  do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coêrencia
        X


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        onde H é o Hamiltoniano do sistema e  é a constante reduzida de Planck.
        • O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Particulas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.











        ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.






        OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.



        PRINCÍPIO GRACELI  DA INTERPOSIÇÃO
        quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta  relação].

        MAS, O QUE CAUSA ESTA RELAÇÃO?

        É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.

        SENDO QUE NO VERÃO E NA FASE DE AFÉLIO  [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA  SE TORNA  MAIOR.


        O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.

        OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.

        COMO FENÔMENSO DE:

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



        E
        COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.

        COMO SE ENCONTRA ABAIXO.:














        PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES


        QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.


        OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.

        OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].

        OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE,  E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.

        COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.

        VEJAMOS ABAIXO.



         um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.

        pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.


        ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.

        LOGO, SE TEM UMA TRANSCENDENTALIDADE  INDETERMINADA .


        COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.


        OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.


        COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI. 


        E COM VARIÁVEIS CONFORME O SDCTI-GRACELI - 








        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

        CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
        POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.

        COMO TAMBÉM TRANSIÇÕES DE :

        E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.


        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



        OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.



        TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].

        CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.

        OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.




        SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =


        X SDCTI - GRACELI







        CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.


        OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.

        E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:

        X

        X SDCTI - GRACELI 





        SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E  INDETERMINISTA GRACELI.

        O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.

        FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].

        É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.





        PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.



        DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.

        OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.


        ESTADO QUÂNTICO EXCITADO E [OU] NORMAL


        =


        X SDCTI - GRACELI 



        SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.




        TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



        TRANSFORMAÇÕES ⇔ INTERAÇÕES =  Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,   Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.
        • X

        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

          X =
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D





        conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.



        RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.

        A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.


        RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.

        A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI




        A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .


        RELATIVIDADE GRACELI DE ALTAS ENERGIAS.

        NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.





        OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



        EM = ENERGIA E MASSA.

        SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

        EM X SDC G.=

        EM =
        X


        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D








         VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




        RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

        [VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
        V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =

        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D




        mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


        um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

        o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

        O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


        Com isto pode-se dividir a física em quatro grandes fases:

        a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões


        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico,  estados de fenômenos, estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado,  vejamos alguns:

        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        Comentários

        Postagens mais visitadas deste blog

        TEORIAS E FILOSOFIAS DE GRACELI 390