TEORIAS E FILOSOFIAS DE GRACELI 382
- Gerar link
- X
- Outros aplicativos
Gás de Bose no SDCTI GRACELI - CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
sexta-feira, 12 de julho de 2019
Um gás de Bose ideal é uma versão quântica de um gás ideal clássico. Ele é composto de bósons, partículas que têm um valor inteiro de spin, e portanto obedecem a estatística de Bose-Einstein. A mecânica estatística de bósons foi desenvolvida por Satyendra Nath Bose para fótons, e estendida posteriormente por Albert Einstein para partículas massivas. Einstein percebeu que um gás ideal de bósons iria se condensar quando a temperatura fosse baixa o suficiente, o que não ocorre com um gás ideal clássico. Esta fase da matéria ficou conhecida como Condensado de Bose-Einstein.
Potencial termodinâmico[editar | editar código-fonte]
Devido a Interação de troca, a maneira mais simples de trabalhar com gases quânticos é com o ensemble grande canônico:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
que para um gás fica:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A segunda soma é restrita ao número total de partículas ser
. Uma maneira de fazer tal soma é somar primeiro sobre todos os
possíveis e depois multiplicar todos os níveis. Para um sistema de bósons, qualquer valor de
é permitido, logo:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
O potencial termodinâmico é então:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Se o gás possuir apenas graus de liberdade translacionais em
dimensões (os demais casos podem ser tratados de forma análoga):
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Note que a função polilogarítmica só está definida para
reais menores ou iguais a 1. O segundo termo que já estava presente na expressão anterior é a contribuição de momento zero, ou seja, do estado de menor energia.
Condensação de Bose-Einstein[editar | editar código-fonte]
O gás de bósons é o sistema mais simples que apresenta o fenômeno de condensação de Bose-Einstein. Para ver esse efeito, escrevemos o número médio de partículas:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
O maior valor da função polilogarítmica acontece em
quando o número de partículas em estados excitados é:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Perceba que para
isso é um número finito que é atingido numa certa temperatura
. Todas as demais
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
partículas deverão estar no estado fundamental, não importando quantas sejam (contanto que a aproximação de gás continue valendo).
ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.
PRINCÍPIO GRACELI DA INTERPOSIÇÃO
quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta relação].
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.
FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].
É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
- X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG DXΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli.xsistema de transições de estados, e estados de Graceli,xT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.
O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.
Com isto pode-se dividir a física em quatro grandes fases:
a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.
teoria da relatividade categorial Graceli
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
matriz categorial Graceli.



x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico, estados de fenômenos, estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado, vejamos alguns:
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Forças estáticas e troca de partículas virtuais NO SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FE
sexta-feira, 12 de julho de 2019
Campos de força estática são campos, como campos simples , elétricos , magnéticos ou gravitacionais , que existem sem excitações. O método de aproximação mais comumque os físicos usam para cálculos de espalhamento pode ser interpretado como forças estáticas que surgem das interações entre dois corpos mediadas por partículas virtuais, partículas que existem apenas por um curto período de tempo determinado pelo princípio da incerteza . [1] As partículas virtuais, também conhecidas como portadores de força , são bósons , com diferentes bósons associados a cada força. [2]
A descrição de partículas virtuais de forças estáticas é capaz de identificar a forma espacial das forças, como o comportamento inverso-quadrado na lei de Newton da gravitação universal e na lei de Coulomb . Também é capaz de prever se as forças são atraentes ou repulsivas para corpos semelhantes.
A formulação integral do caminho é a linguagem natural para descrever os portadores de força. Este artigo usa a formulação integral do caminho para descrever os portadores de força para os campos de rotação 0, 1 e 2. Pions , fótons e gravitons se enquadram nessas respectivas categorias.
Existem limites para a validade da imagem de partícula virtual. A formulação de partícula virtual é derivada de um método conhecido como teoria de perturbação, que é uma aproximação, presumindo que as interações não são muito fortes, e foi planejado para problemas de espalhamento, não estados ligados, como átomos. Para os quarks fortes de ligação de força em núcleons a baixas energias, nunca foi mostrado que a teoria de perturbação produz resultados de acordo com experimentos, [3] portanto, a validade da imagem de "partículas que mediam forças" é questionável. Da mesma forma, para estados ligados, o método falha. [4]Nestes casos, a interpretação física deve ser reexaminada. Como exemplo, os cálculos de estrutura atômica em física atômica ou de estrutura molecular em química quântica não poderiam ser facilmente repetidos, se é que se usam, usando a figura "partícula de mediação de força". [ citação necessário ]
O quadro "partícula mediadora de força" (FMPP) é usado porque a interação clássica de dois corpos (a lei de Coulomb, por exemplo), dependendo de seis dimensões espaciais, é incompatível com a invariância de Lorentz da equação de Dirac . O uso do FMPP é desnecessário na mecânica quântica não- relativística , e a lei de Coulomb é usada como dada em física atômica e química quântica para calcular tanto os estados ligados quanto os de espalhamento. Uma teoria quântica relativista não perturbativa, na qual a invariância de Lorentz é preservada, é alcançável avaliando a lei de Coulomb como uma interação de 4 espaços usando o vetor de posição de 3 espaços de um elétron de referência obedecendo a equação de Dirac e a trajetória quântica de um segundo elétron que depende apenas do tempo escalonado. A trajetória quântica de cada elétron em um conjunto é inferida da corrente de Dirac para cada elétron, definindo-a igual a um campo de velocidade multiplicando a densidade quântica, calculando um campo de posição da integral de tempo do campo de velocidade e finalmente calculando uma trajetória quântica a partir do valor de expectativa do campo de posição. As trajetórias quânticas são naturalmente dependentes do spin, e a teoria pode ser validada verificando se o Princípio de Exclusão de Pauli é obedecido para uma coleção de férmions.
Forças Clássicas [ editar ]
A força exercida por uma massa sobre a outra e a força exercida por uma carga sobre a outra são notavelmente semelhantes. Ambos caem como o quadrado da distância entre os corpos. Ambos são proporcionais ao produto das propriedades dos corpos, massa no caso da gravitação e carga no caso da eletrostática.
Eles também têm uma diferença marcante. Duas massas se atraem, enquanto duas cargas iguais se repelem.
Em ambos os casos, os corpos parecem agir uns sobre os outros a uma certa distância. O conceito de campo foi inventado para mediar a interação entre os corpos, eliminando assim a necessidade de ação à distância . A força gravitacional é mediada pelo campo gravitacional e a força de Coulomb é mediada pelo campo eletromagnético .
Força gravitacional [ editar ]
- x
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
onde G é a constante gravitacional , r é a distância entre as massas e
é o vetor unitário da massa
massa
.
A força também pode ser escrita
- X
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Força de Coulomb [ editar ]
Onde
é a permissividade do vácuo ,
é a separação das duas cargas e
é um vetor unitário na direção de carga
carregar
.
Onde
- X
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Troca de partículas virtuais [ editar ]
Na teoria das perturbações, forças são geradas pela troca de partículas virtuais . A mecânica da troca de partículas virtuais é melhor descrita com a formulação integral do caminho da mecânica quântica. Há insights que podem ser obtidos, no entanto, sem entrar na máquina de integrais de caminho, como por que as forças gravitacionais e eletrostáticas clássicas caem como o quadrado inverso da distância entre os corpos.
Formulação integral do caminho da troca de partículas virtuais [ edit ]
Uma partícula virtual é criada por uma perturbação no estado de vácuo , e a partícula virtual é destruída quando é absorvida de volta ao estado de vácuo por outro distúrbio. As perturbações são imaginadas como devidas a corpos que interagem com o campo de partículas virtuais.
A amplitude da probabilidade [ edit ]
Usando unidades naturais ,
, a amplitude de probabilidade para a criação, propagação e destruição de uma partícula virtual é dada, na formulação integral do caminhopor
- X
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Onde
é o operador hamiltoniano ,
é o tempo decorrido,
é a mudança de energia devido à perturbação,
é a mudança de ação devido à perturbação,
é o campo da partícula virtual, a integral é sobre todos os caminhos, e a ação clássica é dada por
A integral do caminho geralmente pode ser convertida para a forma
Onde
é um operador diferencial com
e
funções do espaço-tempo . O primeiro termo no argumento representa a partícula livre e o segundo termo representa o distúrbio no campo de uma fonte externa, como uma carga ou uma massa.
Onde
- X
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
.
- X
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Energia de interação [ edit ]
Assumimos que há dois distúrbios pontuais representando dois corpos e que os distúrbios são imóveis e constantes no tempo. As perturbações podem ser escritas
onde as funções delta estão no espaço, as perturbações estão localizadas em
e
e os coeficientes
e
são os pontos fortes das perturbações.
Se negligenciarmos as auto-interações dos distúrbios, então W se torna
,
que pode ser escrito
.
Aqui
é a transformada de Fourier de
.
Finalmente, a mudança de energia devido às perturbações estáticas do vácuo é
X.
- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Se essa quantidade for negativa, a força é atraente. Se for positivo, a força é repulsiva.
Exemplos de correntes estáticas, interativas e sem movimento são o Potencial de Yukawa , o potencial de Coulomb em um vácuo e o potencial de Coulomb em um simples plasma ou gás de elétron .
A expressão para a energia de interação pode ser generalizada para a situação na qual as partículas pontuais estão se movendo, mas o movimento é lento comparado com a velocidade da luz. Exemplos são a interação de Darwin no vácuo e a interação de Darwin em um plasma .
Finalmente, a expressão para a energia de interação pode ser generalizada para situações nas quais as perturbações não são partículas pontuais, mas possivelmente cargas de linha, tubos de carga ou vórtices atuais. Exemplos são cargas de duas linhas embutidas em um plasma ou gás de elétrons , potencial de Coulomb entre dois circuitos de corrente embutidos em um campo magnético e interação magnética entre circuitos de corrente em um plasma simples ou gás de elétron . Como visto da interação de Coulomb entre os tubos de exemplo de carga, mostrados abaixo, essas geometrias mais complicadas podem levar a fenômenos tão exóticos quanto números quânticos fracionários .
Exemplos selecionados [ edit ]
O potencial de Yukawa: a força entre dois núcleons em um núcleo atômico [ editar ]
.
A equação de movimento para este lagrangiano é a equação de Klein-Gordon
.
Se adicionarmos uma perturbação, a amplitude de probabilidade se torna
.
Se integrarmos por partes e negligenciarmos os termos de fronteira no infinito, a amplitude de probabilidade se torna
.
Com a amplitude desta forma, pode ser visto que o propagador é a solução de
.
A partir disso, pode ser visto que
.
A energia devido às perturbações estáticas torna-se (veja integrais comuns na teoria quântica de campos )
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
com
que é atraente e tem uma gama de
.
Yukawa propôs que este campo descreve a força entre dois núcleons em um núcleo atômico. Permitiu-lhe prever tanto o alcance quanto a massa da partícula, agora conhecida como píon , associada a esse campo.
Eletrostática [ editar ]
O potencial de Coulomb no vácuo [ editar ]
Onde
,
carga é conservada
,
e nós escolhemos o medidor de Lorenz
.
Além disso, assumimos que há apenas um componente de tempo
à perturbação. Na linguagem comum, isso significa que há uma carga nos pontos de perturbação, mas não há correntes elétricas.
Se seguirmos o mesmo procedimento que fizemos com o potencial Yukawa, descobriremos que
que implica
e
Isso produz
que tem o sinal oposto ao caso Yukawa.
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Portanto, a energia reduz a energia potencial para a força de Coulomb e os coeficientes
e
são proporcionais à carga elétrica. Ao contrário do caso Yukawa, os corpos, nesse caso eletrostático, se repelem.
Potencial de Coulomb em um plasma simples ou gás de elétron [ editar ]
Ondas de plasma [ editar ]
Onde
é a frequência angular da onda,
representa a frequência de plasma ,
é a magnitude da carga de elétrons ,
é a massa de elétrons ,
é a temperatura do elétron ( constante de Boltzmann igual a um), e
é um fator que varia com a frequência de um a três. Em altas freqüências, na ordem da freqüência do plasma, a compressão do fluido eletrônico é um processo adiabático e
é igual a três. Em baixas freqüências, a compressão é um processo isotérmico e
é igual a um. Efeitos de retardamento foram negligenciados na obtenção da relação de dispersão de onda de plasma.
Para baixas frequências, a relação de dispersão torna-se
Onde
.
De fato, se os efeitos do retardamento não são negligenciados, então a relação de dispersão é
que de fato produz o propagador adivinhado. Este propagador é o mesmo que o propagador Coulomb massivo com a massa igual ao comprimento de Debye inverso. A energia de interação é, portanto,
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
O potencial de Coulomb é exibido em escalas de comprimento de um comprimento de Debye.
Plasmons [ editar ]
Em um gás quântico , ondas de plasma são conhecidas como plasmons . A triagem de Debye é substituída pela triagem de Thomas-Fermi para produzir [8]
onde o inverso do comprimento de triagem Thomas-Fermi é
Essa expressão pode ser derivada do potencial químico de um gás de elétrons e da equação de Poisson . O potencial químico de um gás de elétrons próximo do equilíbrio é constante e dado por
Onde
é o potencial elétrico . Linearizar a energia de Fermi em primeira ordem na flutuação da densidade e combinando com a equação de Poisson produz o comprimento da triagem. O portador de força é a versão quântica da onda de plasma .
Duas cargas de linha incorporadas em um plasma ou gás de elétron [ editar ]
Consideramos uma linha de carga com eixo na direção z embutida em um gás de elétrons
Onde
é a distância no plano xy da linha de carga,
é a largura do material na direção z. O sobrescrito 2 indica que a função delta de Dirac está em duas dimensões. O propagador é
Onde
é o comprimento de triagem invertido de Debye-Hückel ou o comprimento de triagem inverso de Thomas-Fermi .
A energia de interação é
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Onde
e
são funções de Bessel e
é a distância entre as duas cargas de linha. Na obtenção da energia de interação, utilizamos as integrais (ver integrais comuns na teoria quântica de campos ).
e
Para
, temos
Potencial de Coulomb entre dois circuitos de corrente embutidos em um campo magnético [ editar ]
Energia de interação para vórtices [ editar ]
Consideramos uma densidade de carga em tubo com eixo ao longo de um campo magnético incorporado em um gás de elétron
e
é a velocidade da partícula em torno do campo magnético e B é a magnitude do campo magnético. A fórmula da velocidade vem da configuração da energia cinética clássica igual ao espaçamento entre os níveis de Landau no tratamento quântico de uma partícula carregada em um campo magnético.
Nesta geometria, a energia de interação pode ser escrita
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Onde
é a distância entre os centros dos loops atuais e
Campo elétrico devido a uma perturbação de densidade [ edit ]
Onde
é a energia potencial de um elétron em um potencial elétrico e
e
são o número de partículas no gás de elétron na ausência de e na presença de um potencial eletrostático, respectivamente.
A flutuação de densidade é então
Onde
é a área do material no plano perpendicular ao campo magnético.
Equação de Poisson rendimentos
Onde
O propagador é então
e a energia de interação se torna
X
SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
onde na segunda igualdade ( unidades gaussianas ) assumimos que os vórtices tinham a mesma energia e a carga de elétrons.
Em analogia com os plasmons , o portador de força é a versão quântica da oscilação híbrida superior que é uma onda de plasma longitudinal que se propaga perpendicularmente ao campo magnético.
Correntes com momento angular [ editar ]
Correntes de função delta [ editar ]

Figura 4. Energias do estado de neutro para valores pares e ímpares de momento angular. A energia é plotada no eixo vertical e r é plotada na horizontal. Quando o momento angular total é par, o mínimo de energia ocorre quando
ou
. Quando o momento angular total é ímpar, não há valores inteiros de momento angular que ficarão no mínimo de energia. Portanto, existem dois estados que estão em ambos os lados do mínimo. Porque
, a energia total é maior do que quando
por um determinado valor de
.
Ao contrário das correntes clássicas, os loops de corrente quântica podem ter vários valores do raio de Larmor para uma determinada energia. [9] Os níveis de Landau , os estados de energia de uma partícula carregada na presença de um campo magnético, são múltiplos degenerados . Os loops de corrente correspondem aos estados de momento angular da partícula carregada que podem ter a mesma energia. Especificamente, a densidade de carga é atingida em torno dos raios de
Onde
é o número quântico do momento angular . Quando
recuperamos a situação clássica em que o elétron orbita o campo magnético no raio de Larmor . Se correntes de dois momento angular
e
interagem, e assumimos que as densidades de carga são funções delta no raio
, então a energia de interação é
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
A energia de interação para
é dado na Figura 1 para vários valores de
. A energia para dois valores diferentes é dada na Figura 2.
Quasiparticles [ editar ]
Para grandes valores de momento angular, a energia pode ter mínimos locais em distâncias diferentes de zero e infinito. Pode-se verificar numericamente que os mínimos ocorrem em
Isto sugere que o par de partículas que são ligadas e separadas por uma distância
agir como um único quasiparticle com momento angular
.
Se escalarmos os comprimentos como
, então a energia de interação se torna
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Onde
O valor do
em que a energia é mínima,
, é independente da relação
. No entanto, o valor da energia no mínimo depende da relação. O mínimo de energia mais baixo ocorre quando
Quando a razão difere de 1, então o mínimo de energia é maior (Figura 3). Portanto, para valores iguais de momento total, a energia mais baixa ocorre quando (Figura 4)
ou
onde o momento angular total é escrito como
Quando o momento angular total é ímpar, os mínimos não podem ocorrer
Os estados de energia mais baixos para o momento angular total ímpar ocorrem quando
ou
e
Densidade de carga espalhada por uma função de onda [ edit ]
A densidade de carga não está realmente concentrada em uma função delta. A carga é distribuída por uma função de onda. Nesse caso, a densidade eletrônica é [10]
A energia de interação se torna
X
SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Onde
é uma função hipergeométrica confluente ou função Kummer . Na obtenção da energia de interação, usamos a integral (ver integrais comuns na teoria quântica de campos ).
Tal como acontece com as taxas de função delta, o valor de
em que a energia é um mínimo local depende apenas do momento angular total, não do momento angular das correntes individuais. Além disso, como acontece com as cargas da função delta, a energia no mínimo aumenta à medida que a relação entre o momento angular varia de um. Portanto, a série
e
aparecem também no caso de cargas espalhadas pela função de onda.
A função de onda de Laughlin é um ansatz para a função de onda quase-partícula. Se o valor de expectativa da energia de interação for assumido em uma função de onda de Laughlin , essas séries também serão preservadas.
Magnetostáticos [ editar ]
Interação de Darwin no vácuo [ edit ]
Uma partícula em movimento carregada pode gerar um campo magnético que afeta o movimento de outra partícula carregada. A versão estática desse efeito é chamada de interação de Darwin . Para calcular isso, considere as correntes elétricas no espaço gerado por uma carga em movimento
com uma expressão comparável para
.
A transformada de Fourier desta corrente é
A corrente pode ser decomposta em uma parte transversal e longitudinal (veja a decomposição de Helmholtz ).
que resulta da conservação de carga. Aqui
desaparece porque estamos considerando forças estáticas.
Com a corrente desta forma a energia da interação pode ser escrita
.
A equação propagadora da Laguna de Proca é
que produz
que reduz a
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
no limite de m pequeno. A interação energia é o negativo da interação Lagrangiana. Para duas partículas semelhantes viajando na mesma direção, a interação é atraente, que é o oposto da interação de Coulomb.
Interação de Darwin em um plasma [ editar ]
que implica
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Interação magnética entre loops de corrente em um plasma simples ou gás de elétron [ editar ]
A energia da interação [ edit ]
Considere um tubo de corrente girando em um campo magnético embutido em um simples plasma ou gás de elétrons. A corrente, que fica no plano perpendicular ao campo magnético, é definida como
Onde
e
é o vetor unitário na direção do campo magnético. Aqui
indica a dimensão do material na direção do campo magnético. A corrente transversal, perpendicular ao vetor de onda , impulsiona a onda transversal .
A energia da interação é
Onde
é a distância entre os centros dos loops atuais e
é uma função de Bessel do primeiro tipo. Na obtenção da energia de interação utilizamos as integrais
e
Uma corrente em um plasma confinado ao plano perpendicular ao campo magnético gera uma onda extraordinária . [12] Esta onda gera correntes Hall que interagem e modificam o campo eletromagnético. A relação de dispersão para ondas extraordinárias é [13]
que dá para o propagador
Onde
em analogia com o propagador de Darwin. Aqui, a freqüência do híbrido superior é dada por
Aqui n é a densidade eletrônica, e é a magnitude da carga de elétrons, e m é a massa de elétrons.
A energia de interação torna-se, para correntes semelhantes,
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
Limite de pequena distância entre os loops de corrente [ edit ]
No limite que a distância entre os loops de corrente é pequena,
Onde
e
e eu e K são funções modificadas de Bessel. Assumimos que as duas correntes têm a mesma carga e velocidade.
Para o pequeno senhor, a integral se torna
Para grande senhor, a integral se torna
Relação com o efeito Hall quântico [ editar ]
e N é o número de elétrons no material e A é a área do material perpendicular ao campo magnético. Este parâmetro é importante no efeito Hall quântico e no efeito Hall quântico fracionário . O fator de preenchimento é a fração de estados de Landau ocupados na energia do estado fundamental.
Para casos de interesse no efeito Hall quântico,
é pequeno. Nesse caso, a energia de interação é
X- SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOMÊNICAS.
é a energia de interação para fator de preenchimento zero. Nós estabelecemos a energia cinética clássica para a energia quântica
Gravitação [ edit ]
Um distúrbio gravitacional é gerado pelo tensor de tensão-energia
; consequentemente, o Lagrangiano para o campo gravitacional é spin -2. Se as perturbações estão em repouso, então o único componente do tensor de tensão-estresse que persiste é o
componente. Se usarmos o mesmo truque de dar ao gravitão alguma massa e depois levar a massa a zero no final do cálculo, o propagador se torna
e
Unidades de Planck no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS.FENOM.
quinta-feira, 18 de julho de 2019
As unidades de Planck ou unidades naturais são um sistema de unidades proposto pela primeira vez em 1899 por Max Planck. O sistema mede várias das magnitudes fundamentais do universo: tempo, longitude, massa, carga elétrica e temperatura. O sistema se define fazendo que estas cinco constantes físicas universais da tabela tomem o valor 1 quando se expressem equações e cálculos em tal sistema.
O uso deste sistema de unidades traz consigo várias vantagens. A primeira e mais óbvia é que simplifica muito a estrutura das equações físicas porque elimina as constantes de proporcionalidade e faz com que os resultados das equações não dependam do valor das constantes.
Por outra parte, se podem comparar muito mais facilmente as magnitudes de distintas unidades. Por exemplo, dois prótons se repelem porque a repulsão eletromagnética é muito mais forte que a atração gravitacional entre eles. Isto pode ser comprovado ao ver que os prótons têm uma carga aproximadamente igual a uma unidade natural de carga, mas sua massa é muito menor que a unidade natural de massa.
Também permite evitar bastantes problemas de arredondamento, sobretudo em computação. Entretanto, têm o inconveniente de que ao usá-las é mais difícil perceber-se os erros dimensionais. São populares na área de investigação da relatividade geral e a gravidade quântica.
As unidades de Planck podem ser chamadas (por ironia) pelos físicos como as "unidades de Deus". Isto elimina qualquer arbitrariedade antropocêntrica do sistema de unidades.
Tabela 1: Constantes físicas fundamentais
Constante | Símbolo | Dimensão |
---|---|---|
velocidade da luz no vácuo | L / T | |
Constante de gravitação | L3/T2M | |
Constante reduzida de Planck | ML2/T | |
Constante de força de Coulomb | M L3/ Q2 T2 | |
Constante de Boltzmann | M L3/T2K |
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Expressão de leis físicas em unidades de Planck[editar | editar código-fonte]
- se converte em
utilizando unidades de Planck.
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- se converte em
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- A energia de uma partícula ou fóton com frequência radiante
em sua função de onda
- se converte em
- A famosa equação de massa-energia de Einstein
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- se converte em
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- (por exemplo, um corpo com uma massa de 5.000 unidades de Planck de massa tem uma energia intrínseca de 5.000 unidades de Planck de energia) e sua forma completa
- se converte em
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- se converte em
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- A unidade de temperatura se define para que a media de energia térmica cinética por partícula por grau de libertade de movimento
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- se converte em
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- se converte em
.
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- se convertem respectivamente em
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- utilizando as unidades de Planck. (Os fatores
podem ser eliminados se
for normalizado, em vez da constante de força de Coulomb
.)
- utilizando as unidades de Planck. (Os fatores
Unidades de Planck básicas[editar | editar código-fonte]
Ao dar valor 1 às cinco constantes fundamentais, as unidades de tempo, comprimento, massa, carga e temperatura se definem assim:
Tabela 2: Unidades de Planck básicas
Nome | Dimensão | Expressão | Equivalência aproximada no Sistema Internacional |
---|---|---|---|
Tempo Planck | Tempo (T) | 5.39121 × 10−44 s | |
Comprimento de Planck | Comprimento (L) | 1.61624 × 10−35 m | |
Massa de Planck | Massa (M) | 2.17645 × 10−8 kg | |
Carga de Planck | Carga elétrica (Q) | 1.8755459 × 10−18 C | |
Temperatura de Planck | Temperatura (ML2T−2/k) | 1.41679 × 1032 K |
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Unidades de Planck derivadas[editar | editar código-fonte]
Como em outros sistemas de unidades, as magnitudes físicas derivadas podem ser definidas baseando-se nas Unidades de Planck.
Tabela 3: Unidades de Planck derivadas
Nome | Dimensão | Expressão | Equivalência aproximada no Sistema Internacional |
---|---|---|---|
Energia de Planck | Energia (ML2/T2) | 1.9561 × 109 J | |
Força de Planck | Força (ML/T2) | 1.21027 × 1044 N | |
Potência de Planck | Potência (ML2/T3) | 3.62831 × 1052 W | |
Densidade de Planck | Densidade (M/L3) | 5.15500 × 1096 kg/m³ | |
Frequência angular de Planck | Frequência (1/T) | 1.85487 × 1043 rad/s | |
Pressão de Planck | Pressão (M/LT2) | 4.63309 × 10113 Pa | |
Corrente elétrica de Planck | Corrente elétrica (Q/T) | 3.4789 × 1025 A | |
Tensão elétrica de Planck | Tensão elétrica(ML2/T2Q) | 1.04295 × 1027 V | |
Resistência elétrica de Planck | Resistência (ML2/T Q2) | 2.99792458 × 10¹ Ω |
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Unidades de Planck simplificam as equações principais da física[editar | editar código-fonte]
Ordinariamente, grandezas físicas que tem diferentes dimensões (tais como tempo e comprimento) não podem ser equiparadas, mesmo que sejam numericamente iguais (1 segundo não é o mesmo que 1 metro). Contudo, em física teórica este critério pode ser anulado de maneira a simplificar cálculos. O processo pelo qual isto é feito é chamado "adimensionalização". A tabela 4 mostra como unidades de Planck, pela escolha dos valores numéricos das cinco constantes fundamentais à unidade, simplificam muitas equações da física e fazem-nas adimensionais.
Tabela 4: Equações adimensionalizadas
Forma usual | Forma adimensionalizada | |
---|---|---|
Lei de Newton de Gravitação Universal | ||
Equação de Schrödinger | ||
Relação de Planck relacionando a energia de partícula à frequência angular | ||
Equação massa/energia da relatividade restrita de Einstein | ||
Equações de campo de Einstein da relatividade geral | ||
Energia térmica por partícula por grau de liberdade | ||
Lei de Coulomb | ||
Equações de Maxwell |
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Normalizações alternativas
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Subscrever: Mensagens (Atom)
Subscrever: Mensagens (Atom)
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário